Identification of core genes associated with prostate cancer progression and outcome via bioinformatics analysis in multiple databases

通过对多个数据库进行生物信息学分析,鉴定与前列腺癌进展和预后相关的核心基因

阅读:2
作者:Yutao Wang # ,Jianfeng Wang # ,Kexin Yan ,Jiaxing Lin ,Zhenhua Zheng ,Jianbin Bi

Abstract

The morbidity and mortality of prostate carcinoma has increased in recent years and has become the second most common ale malignant carcinoma worldwide. The interaction mechanisms between different genes and signaling pathways, however, are still unclear. Methods: Variation analysis of GSE38241, GSE69223, GSE46602 and GSE104749 were realized by GEO2R in Gene Expression Omnibus database. Function enrichment was analyzed by DAVID.6.8. Furthermore, the PPI network and the significant module were analyzed by Cytoscape, STRING and MCODE.GO. Pathway analysis showed that the 20 candidate genes were closely related to mitosis, cell division, cell cycle phases and the p53 signaling pathway. A total of six independent prognostic factors were identified in GSE21032 and TCGA PRAD. Oncomine database and The Human Protein Atlas were applied to explicit that six core genes were over expression in prostate cancer compared to normal prostate tissue in the process of transcriptional and translational. Finally, gene set enrichment were performed to identified the related pathway of core genes involved in prostate cancer. Result: Hierarchical clustering analysis revealed that these 20 core genes were mostly related to carcinogenesis and development. CKS2, TK1, MKI67, TOP2A, CCNB1 and RRM2 directly related to the recurrence and prognosis of prostate cancer. This result was verified by TCGA database and GSE21032. Conclusion: These core genes play a crucial role in tumor carcinogenesis, development, recurrence, metastasis and progression. Identifying these genes could help us to understand the molecular mechanisms and provide potential biomarkers for the diagnosis and treatment of prostate cancer. Keywords: Biomarkers; GEO; Prognosis factor; Prostate cancer; TCGA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。