A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens

产铬梭菌中的铁氧还蛋白依赖性二氢嘧啶脱氢酶

阅读:2
作者:Feifei Wang # ,Yifeng Wei # ,Qiang Lu ,Ee Lui Ang ,Huimin Zhao ,Yan Zhang

Abstract

Dihydropyrimidine dehydrogenase (PydA) catalyzes the first step of the reductive pyrimidine degradation (Pyd) pathway in bacteria and eukaryotes, enabling pyrimidines to be utilized as substrates for growth. PydA homologs studied to date catalyze the reduction of uracil to dihydrouracil, coupled to the oxidation of NAD(P)H. Uracil reduction occurs at a flavin mononucleotide (FMN) site, and NAD(P)H oxidation occurs at a flavin adenine dinucleotide (FAD) site, with two ferredoxin domains thought to mediate inter-site electron transfer. Here, we report the biochemical characterization of a Clostridial PydA homolog (PydAc) from a Pyd gene cluster in the strict anaerobic bacterium Clostridium chromiireducens. PydAc lacks the FAD domain, and instead is able to catalyze uracil reduction using reduced methyl viologen or reduced ferredoxin as the electron source. Homologs of PydAc are present in Pyd gene clusters in many strict anaerobic bacteria, which use reduced ferredoxin as an intermediate in their energy metabolism. Keywords: Dihydropyrimidine dehydrogenase; Fe-S cluster; Pyrimidine; clostridium; ferredoxin; reductive pyrimidine degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。