Coupling of Peptidoglycan Synthesis to Central Metabolism in Mycobacteria: Post-transcriptional Control of CwlM by Aconitase

分枝杆菌中肽聚糖合成与中心代谢的偶联:乌头酸酶对 CwlM 的转录后调控

阅读:2
作者:Peter J Bancroft ,Obolbek Turapov ,Heena Jagatia ,Kristine B Arnvig ,Galina V Mukamolova ,Jeffrey Green

Abstract

Mycobacterium tuberculosis causes human tuberculosis, and a better understanding of its biology is required to identify vulnerabilities that might be exploited in developing new therapeutics. The iron-sulfur cluster of the essential M. tuberculosis central metabolic enzyme, aconitase (AcnA), disassembles when exposed to oxidative/nitrosative stress or iron chelators. The catalytically inactive apo-AcnA interacts with a sequence resembling an iron-responsive element (IRE) located within the transcript of another essential protein, CwlM, a regulator of peptidoglycan synthesis. A Mycobacterium smegmatis cwlM conditional mutant complemented with M. tuberculosis cwlM with a disrupted IRE is unable to recover from combinations of oxidative, nitrosative, and iron starvation stresses. An equivalent M. tuberculosis cwlM conditional mutant complemented with the cwlM gene lacking a functional IRE exhibits a growth defect in THP-1 macrophages. It appears that AcnA acts to couple peptidoglycan synthesis and central metabolism, and disruption of this coupling potentially leaves mycobacteria vulnerable to attack by macrophages. Keywords: CwlM; Mycobacterium tuberculosis; aconitase; iron-responsive element; macrophage infection; nitrosative stress; oxidative stress; peptidoglycan; post-transcriptional regulation; protein kinase B (PknB).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。