pH-dependent transcriptional profile changes in iron-deficient Arabidopsis roots

缺铁拟南芥根部pH依赖性转录谱变化

阅读:3
作者:Huei-Hsuan Tsai ,Wolfgang Schmidt

Abstract

Background: Iron is an essential element for plants and abundantly present in most mineral soils. The mobility of iron is, however, dependent on the redox potential and hydrogen activity (pH) of the soil, factors that may limit its availability to plants in particular at alkaline pHs. Iron deficiency triggers pronounced changes in the transcriptional profile of plants, inducing processes that aid in the acquisition, uptake, and translocation of iron. How ambient pH impact the transcriptional iron deficiency response has not yet been elucidated in detail. Results: Here, we provide an RNA-seq data set that catalogs global gene expression changes of iron-deficient plants grown at either optimal (5.5) or high (7.0) pH. A suite of 857 genes changed significantly and more than twofold in expression; only 54 genes of this suite were also differentially expressed between iron-deficient and iron-sufficient plants grown at pH 5.5. Among the high pH-responsive genes, 186 were earlier shown to be responsive to short-term transfer to low pH, 91 genes of this subset were anti-directionally regulated by high and low pH. The latter subset contained genes involved in cell wall organization, auxin homeostasis, and potential hubs of yet undefined signaling circuits. Growing iron-deficient plants at high pH also modulated the transcriptional iron deficiency response observed at pH 5.5 by compromising the enzymatic reduction of ferric chelates and favoring the production of iron-mobilizing coumarins. Conclusions: It is concluded that ambient pH is an important determinant of global gene expression which tunes iron acquisition to the prevailing edaphic conditions. Keywords: Alkaline soil; Ambient pH; Coumarins; Iron deficiency; Iron uptake; RNA-seq; Transcriptome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。