Effects of photoperiod on morphology and function in testis and epididymis of Cricetulus barabensis

光周期对黑线仓鼠睾丸和附睾形态和功能的影响

阅读:4
作者:Junjie Mou, Jinhui Xu, Zhe Wang, Chuanli Wang, Xueqi Yang, Xingchen Wang, Huiliang Xue, Ming Wu, Laixiang Xu

Abstract

Photoperiod regulates the seasonal reproductive rhythms of mammals by influencing the development and function of sexual organs; however, the underlying mechanism remains unclear. We examined the morphology and functioning of the main sex organs of striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short daylight [SD], moderate daylight [MD], and long daylight [LD]) and further investigated the underlying molecular mechanisms. There was an inverse correlation between blood melatonin levels and photoperiod in the order SD > MD > LD. Decreases in body and tissue weights were observed under SD, whereas testis and epididymis weights between MD and LD were comparable. The diameters of the spermatogenic tubules, thickness of the spermatogenic epithelium, and the number of spermatogonia and Sertoli cells decreased under SD, whereas the serum-luteinizing hormone, follicle-stimulating hormone, and fecal testosterone concentrations decreased under LD. In SD, bax/bcl2 protein expression increased in the testes and decreased in the epididymides, whereas LC3II/LC3I remained unchanged in the testes and increased in the epididymides compared with the MD group. In LD, bax/bcl2 and LC3II/LC3I protein expression levels were unchanged in the testes but were decreased in the epididymides. In SD and LD, adenosine triphosphate synthase and citrate synthase protein expression levels were unchanged in the testes but were decreased in the epididymides. Drp1 and Mff protein expression increased in the testes and decreased in the epididymides. Overall, different regulatory mechanisms in the testis and epididymis led to degeneration under SD and maintenance under LD, preferentially protecting mitochondrial function in the testis by regulating mitochondrial fission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。