Structural Heterogeneity of Human Histone H2A.1

人类组蛋白H2A.1的结构异质性

阅读:2
作者:Khoa N Pham ,Yasir Mamun ,Francisco Fernandez-Lima

Abstract

Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。