A novel, high-efficiency cellular model of fibrillar alpha-synuclein inclusions and the examination of mutations that inhibit amyloid formation

一种新型、高效的纤维状 α-突触核蛋白内含体细胞模型以及抑制淀粉样蛋白形成的突变检查

阅读:8
作者:Elisa A Waxman, Benoit I Giasson

Abstract

Intracytoplasmic alpha-synuclein (alpha-syn) amyloidogenic inclusions are a major pathological feature of Parkinson's disease, dementia with Lewy body disease and multiple systems atrophy. The mechanisms involved in the formation and inhibition of these aggregates are areas of intense investigation. The present study characterizes a novel cellular model for the study of alpha-syn aggregation, incorporating nucleation-dependent aggregation and a new function for calcium phosphate precipitation. Cultured cells were readily induced to develop large, cytoplasmic alpha-syn filamentous aggregates that were hyperphosphorylated, often ubiquitinated and thioflavin positive. These cellular aggregates formed in the majority of transfected cells and recruited approximately half of endogenously expressed alpha-syn. Using this system, we examined single-point mutations that inhibit alpha-syn amyloid formation in vitro. Three mutations (V66P, T72P and T75P) significantly hindered alpha-syn aggregation in this cell model. The T75P mutant, which could abrogate amyloid formation of wild-type alpha-syn in vitro, did not prevent wild-type alpha-syn cellular aggregates. These studies suggest that the propensity of alpha-syn to form cellular aggregates may be more pronounced than in isolated in vitro studies. This novel high-efficiency cellular model of alpha-syn aggregation is a valuable system that may be used to further understand alpha-syn aggregation and allow for the generation of future therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。