Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells

机械拉伸激活肺泡 I 型细胞小窝中的 piezo1,从而引发 ATP 释放和旁分泌刺激肺泡 II 型细胞分泌表面活性剂

阅读:5
作者:Kathrin Diem, Michael Fauler, Giorgio Fois, Andreas Hellmann, Natalie Winokurow, Stefan Schumacher, Christine Kranz, Manfred Frick

Abstract

Secretion of pulmonary surfactant in the alveoli of the lungs is essential to maintain lung function. Stretching of alveoli during lung inflation is the main trigger for surfactant secretion. Yet, the molecular mechanisms how mechanical distension of alveoli results in surfactant secretion are still elusive. The alveolar epithelium consists of alveolar epithelial type I (ATI) and surfactant secreting type II (ATII) cells. ATI, but not ATII cells, express caveolae, small plasma membrane invaginations that can respond to plasma membrane stresses and serve mechanotransductive roles. Within this study, we investigated the role of caveolae as mechanosensors in the alveolus. We generated a human caveolin-1 knockout ATI cell (hAELVicav-/- ) using CRISPR/Cas9. Wildtype (hAELViwt ) and hAELVicav-/- cells grown on flexible membranes responded to increasing stretch amplitudes with rises in intracellular Ca2+ . The response was less frequent and started at higher stretch amplitudes in hAELVicav-/- cells. Stretch-induced Ca2+ -signals depended on Ca2+ -entry via piezo1 channels, localized within caveolae in hAELViwt and primary ATI cells. Ca2+ -entry via piezo1 activated pannexin-1 hemichannels resulting in ATP release from ATI cells. ATP release was reduced in hAELVicav-/- cells. In co-cultures resembling the alveolar epithelium, released ATP stimulated Ca2+ signals and surfactant secretion from neighboring ATII cells when co-cultured with hAELViwt but not hAELVicav-/- cells. In summary, we propose that caveolae in ATI cells are mechanosensors within alveoli regulating stretch-induced surfactant secretion from ATII cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。