Pioglitazone protects PC12 cells against oxidative stress injury: An in vitro study of its antiapoptotic effects via the PPARγ pathway

吡格列酮保护 PC12 细胞免受氧化应激损伤:通过 PPARγ 通路进行抗凋亡作用的体外研究

阅读:5
作者:Yali Li, Jun Long, Libo Li, Ziyao Yu, Yanjing Liang, Bin Hou, Li Xiang, Xiaolin Niu

Abstract

To the best of our knowledge, the role of peroxisome proliferator-activated receptor γ (PPARγ) in oxidative stress-induced PC12 cell damage is unknown. Using a PC12 cell model with H2O2 treatment, the present study investigated the expression levels of apoptosis-related genes and neuronal apoptosis after oxidative stress injury. The present study further investigated the protective effect and mechanism of pioglitazone, a PPARγ agonist. PC12 cells treated with H2O2 were used as a model of oxidative stress injury. An MTT assay and flow cytometry were used to detect the effect of H2O2 on PC12 cell viability and the protective effect of pioglitazone. A TUNEL assay was used to detect neuronal apoptosis. The expression levels of PPARγ, Bax, Bcl-2 and caspase-3 were examined by reverse transcription-quantitative PCR and western blotting. H2O2 reduced PC12 cell viability in a dose- and time-dependent manner. H2O2 significantly upregulated the protein expression levels of Bax and the cleaved caspase-3/caspase-3 ratio (P<0.01), decreased the protein expression levels of Bcl-2 (P<0.01), and increased the apoptosis rate of PC12 cells. Pioglitazone significantly reduced the protein expression levels of Bax and the cleaved caspase-3/caspase-3 ratio (P<0.01), increased the expression levels of Bcl-2 (P<0.01), decreased the Bax/Bcl-2 expression ratio (P<0.01) and increased the viability of H2O2-damaged PC12 cells in a dose-dependent manner. Treatment with the PPARγ antagonist GW9662 or PPARγ small interfering RNA counteracted the protective effect of pioglitazone on PC12 cells to different extents (P<0.01). Therefore, the present study reported the role of PPARγ in protecting PC12 cells against oxidative stress injury, which may lead to novel therapeutic approaches for neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。