Interplay between Electrolyte-Gated Organic Field-Effect Transistors and Surfactants: A Surface Aggregation Tool and Protecting Semiconducting Layer

电解质栅控有机场效应晶体管与表面活性剂的相互作用:表面聚集工具和半导体保护层

阅读:3
作者:Qiaoming Zhang ,Adrián Tamayo ,Francesca Leonardi ,Marta Mas-Torrent

Abstract

Molecular surfactants, which are based on a water-insoluble tail and a water-soluble head, are widely employed in many areas, such as surface coatings or for drug delivery, thanks to their capability to form micelles in solution or supramolecular structures at the solid/liquid interface. Electrolyte-gated organic field-effect transistors (EGOFETs) are highly sensitive to changes occurring at their electrolyte/gate electrode and electrolyte/organic semiconductor interfaces, and hence, they have been much explored in biosensing due to their inherent amplification properties. Here, we demonstrate that the EGOFETs and surfactants can provide mutual benefits to each other. EGOFETs can be a simple and complementary tool to study the aggregation behavior of cationic and anionic surfactants at low concentrations on a polarized metal surface. In this way, we have monitored the monolayer formation of cationic and anionic surfactants at the water/electrode interface with p-type and n-type devices, respectively. On the other hand, the operational stability of EGOFETs has been dramatically enhanced, thanks to the formation of a protective layer on top of the organic semiconductor by exposing it to a high concentration of a surfactant solution (above the critical micelle concentration). Stable performances were achieved for more than 10 and 2 h of continuous operation for p-type and n-type devices, respectively. Accordingly, this work points not only that EGOFETs can be applied to a wider range of applications beyond biosensing but also that these devices can effectively improve their long-term stability by simply treating them with a suitable surfactant. Keywords: electrolyte-gated organic field-effect transistors; long-term stability; protective top layer; surface aggregation; surfactant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。