Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells

晚期糖基化终产物通过激活小鼠肝星状细胞中的 NADPH 氧化酶诱导活性氧的产生

阅读:4
作者:Eduardo L M Guimarães, Christophe Empsen, Albert Geerts, Leo A van Grunsven

Aims

Advanced glycation end products are known to play an important role in the metabolic syndrome and were recently suggested to contribute to liver fibrosis development. However, little is known about the effect of advanced glycation end products on hepatic stellate cells, the major contributors to liver fibrosis development. We therefore studied the effect of advanced glycation end products on reactive oxygen species generation, a main feature for the activation hepatic stellate cells.

Background & aims

Advanced glycation end products are known to play an important role in the metabolic syndrome and were recently suggested to contribute to liver fibrosis development. However, little is known about the effect of advanced glycation end products on hepatic stellate cells, the major contributors to liver fibrosis development. We therefore studied the effect of advanced glycation end products on reactive oxygen species generation, a main feature for the activation hepatic stellate cells.

Conclusions

The demonstration of advanced glycation end product-induced reactive oxygen species generation in hepatic stellate cells unveils a potential new route through which advanced glycation end products induce liver fibrosis in the metabolic syndrome.

Methods

Three different types of advanced glycation end products were generated by BSA incubation with different substrates. The presence of advanced glycation end product receptors was examined by RTq-PCR, immunofluorescence and western blotting. Reactive oxygen species production was measured using DCFH-DA.

Results

Hepatic stellate cells express five advanced glycation end product receptors: Galectin-3, CD36, SR-AI, SR-BI and RAGE. All receptors, except SR-BI, showed up-regulation during HSC activation. All three advanced glycation end product types induced reactive oxygen species generation. DPI and NSC, a NADPH oxidase and a Rac1 inhibitor respectively, inhibited reactive oxygen species production. Rottlerin, a molecule often used as a PKCdelta inhibitor, also abrogated reactive oxygen species production. SiRNA mediated knockdown of p47(phox), Rac1 and PKCdelta decreased reactive oxygen species production induced by advanced glycation end products, establishing a role for these proteins in reactive oxygen species induction. Conclusions: The demonstration of advanced glycation end product-induced reactive oxygen species generation in hepatic stellate cells unveils a potential new route through which advanced glycation end products induce liver fibrosis in the metabolic syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。