A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression

用于转录组分析结直肠肿瘤形成和进展的合并微阵列元数据集

阅读:3
作者:Michael Rohr ,Jordan Beardsley ,Sai Preethi Nakkina ,Xiang Zhu ,Jihad Aljabban ,Dexter Hadley ,Deborah Altomare

Abstract

Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。