Imaging the in vivo growth patterns of bacteria in human gut Microbiota

对人类肠道菌群中细菌的体内生长模式进行成像

阅读:3
作者:Liyuan Lin ,Jia Song ,Jian Li ,Xiaolei Zuo ,Hong Wei ,Chaoyong Yang ,Wei Wang

Abstract

How to study the unculturable bacteria in the laboratory is one of the major challenges in human gut microbiota research. The resulting lack of microbiology knowledge of this "dark matter" greatly hinders further understanding of our gut microbiota. Here, to characterize the in vivo growth and division of human gut bacteria, we report the integrative use of STAMP (sequential tagging with D-amino acid-based metabolic probes) and fluorescence in situ hybridization (FISH) in a human microbiota-associated mouse model. After stable colonization of the human fecal microbiotas in germ-free mice, two fluorescent D-amino acid probes were sequentially administered by gavage, and the dually labeled peptidoglycan of the bacteria provided a chronological recording of their cell wall syntheses. Following taxonomic identification with FISH staining, the growth patterns of 32 species, including 5 currently unculturables, were identified. Surprisingly, we found that many bacterial species in the human microbiota were significantly shorter than those in the mouse gut microbiota. An imaging database for gut bacteria ̶ Microbiome Atlas was built for summarizing STAMP imaging of bacteria from different microbiotas, which can be contributed by the microbiota research community worldwide. This integrative imaging strategy and the database will promote our understanding of the bacterial cytology in gut microbiotas and facilitate communications among cellular microbiologists. Keywords: D-amino acids; FISH; Human gut microbiota; Microbiome Atlas; STAMP; bacterial division patterns; fluorescence imaging; metabolic labeling; peptidoglycan.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。