Targeting DNAJC19 overcomes tumor growth and lung metastasis in NSCLC by regulating PI3K/AKT signaling

靶向 DNAJC19 通过调节 PI3K/AKT 信号传导来抑制 NSCLC 中的肿瘤生长和肺转移

阅读:5
作者:Ji Zhou #, Yang Peng #, Ying-Chun Gao #, Tai-Yu Chen, Peng-Cheng Li, Ke Xu, Tao Liu, Tao Ren

Background

Some driver oncogenes are still unknown in non-small-cell lung cancer (NSCLC). DNAJC19, a major component of the translocation machinery of mitochondrial membranes, is a disease-associated protein. Herein, we report the role of DNAJC19 in NSCLC cell growth and metastasis.

Conclusions

DNAJC19 greatly promotes NSCLC cell growth and lung metastasis by regulating PI3K/AKT signaling, providing a novel therapeutic target for treating NSCLC patients.

Methods

Immunohistochemistry (IHC) was performed to investigate DNAJC19 expression in NSCLC clinical samples. For knockdown or overexpression assays in A549 or NCI-H1299 lung cancer cells, lentiviral vectors were used. After assessment of cell functions, DNAJC19-knockdown A549 cells were further applied to establish mouse xenograft and metastasis tumor models. Assessments based on the RNA-seq data, western blotting, PCR and IHC were performed for the mechanistic study.

Results

Expression of DNAJC19 was higher in tumors than in noncancerous adjacent tissues. Survival analysis indicated that low DNAJC19 levels were correlated with an increased progression-free survival rate. ShRNA-mediated knockdown of DNAJC19 markedly inhibited cell growth, viability, migration and invasion. Moreover, RNA-seq analysis revealed that the PI3K/AKT signaling pathway was involved in molecular events when A549 cells were treated with shDNAJC19. In addition, DNAJC19 knockdown decreased PI3Kp85a, AKT and p-AKT expression in A549 cells, and cellular functions were greatly rescued in DNAJC19-knockdown A549 cells by ectopic overexpression of AKT. Furthermore, tumor xenograft growth and lung metastasis were markedly repressed in the shDNAJC19 group compared to the control group. As expected, the expression levels of DNAJC19, PI3K and AKT in xenograft mouse samples were also lower in the shDNAJC19 group than in the shCtrl group. Conclusions: DNAJC19 greatly promotes NSCLC cell growth and lung metastasis by regulating PI3K/AKT signaling, providing a novel therapeutic target for treating NSCLC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。