Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy

舌下运动神经元池中 TASK-1/3 通道的调节及其对体内舌头运动输出和兴奋性输入反应的影响:对阻塞性睡眠呼吸暂停药物治疗策略的影响

阅读:4
作者:Patrick Gurges, Hattie Liu, Richard L Horner

Abstract

Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake-active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep-wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。