Brucine-Induced Neurotoxicity by Targeting Caspase 3: Involvement of PPARγ/NF-κB/Apoptosis Signaling Pathway

马钱子碱通过靶向 Caspase 3 诱导神经毒性:PPARγ/NF-κB/凋亡信号通路的参与

阅读:5
作者:Yaying Lei, Fangqin Hou, Xiaoyu Wu, Yang Yi, Fan Xu, Qihai Gong, Jianmei Gao

Abstract

Brucine, a weak alkaline indole alkaloid, is one of the main bioactive and toxic constituents of Strychnos nux-vomica L., which exerts multiple pharmacological activities, such as anti-tumor, anti-inflammatory, and analgesic effect. However, its potential toxic effects limited its clinical application, especially central nervous system toxicity. The present study was designed to investigate the neurotoxicity and mechanism of brucine. Our results showed that brucine significantly induced Neuro-2a cells and primary astrocyte death, as evidenced by MTT assay and LDH release. Moreover, transcriptome analysis indicated that PPAR/NF-κB and apoptosis signaling pathways were involved in the brucine-induced cytotoxicity in Neuro-2a cells. Subsequently, in fact, brucine evidently inhibited PPARγ and promoted phosphorylation of NF-κB. Furthermore, PPARγ inhibitor aggravated the neurotoxicity, while NF-κB inhibitor substantially reversed brucine-induced neurotoxicity. Moreover, brucine also significantly induced neuronal apoptosis and triggered increase in ratio of Bax/Bcl-2 and level of cleaved caspase 3, as well as its activity as evidenced by TUNEL staining and Western blot. Furthermore, molecular docking analysis predicted that brucine directly bound to caspase 3. Intriguingly, a caspase 3 inhibitor (Z-DEVE-FMK) largely abolished the neurotoxicity of brucine. Our results reveal that brucine-induced neurotoxicity via activation of PPARγ/NF-κB/caspase 3-dependent apoptosis pathway. These findings will provide a novel strategy against brucine-induced neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。