ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell

ECNano:一种经济高效的工作流程,利用单个 MinION 芯片即可对 4800 个具有临床意义的基因进行靶向富集测序和精准变异检测。

阅读:2
作者:Amy Wing-Sze Leung # ,Henry Chi-Ming Leung # ,Chak-Lim Wong ,Zhen-Xian Zheng ,Wui-Wang Lui ,Ho-Ming Luk ,Ivan Fai-Man Lo ,Ruibang Luo ,Tak-Wah Lam

Abstract

Background: The application of long-read sequencing using the Oxford Nanopore Technologies (ONT) MinION sequencer is getting more diverse in the medical field. Having a high sequencing error of ONT and limited throughput from a single MinION flowcell, however, limits its applicability for accurate variant detection. Medical exome sequencing (MES) targets clinically significant exon regions, allowing rapid and comprehensive screening of pathogenic variants. By applying MES with MinION sequencing, the technology can achieve a more uniform capture of the target regions, shorter turnaround time, and lower sequencing cost per sample. Method: We introduced a cost-effective optimized workflow, ECNano, comprising a wet-lab protocol and bioinformatics analysis, for accurate variant detection at 4800 clinically important genes and regions using a single MinION flowcell. The ECNano wet-lab protocol was optimized to perform long-read target enrichment and ONT library preparation to stably generate high-quality MES data with adequate coverage. The subsequent variant-calling workflow, Clair-ensemble, adopted a fast RNN-based variant caller, Clair, and was optimized for target enrichment data. To evaluate its performance and practicality, ECNano was tested on both reference DNA samples and patient samples. Results: ECNano achieved deep on-target depth of coverage (DoC) at average > 100× and > 98% uniformity using one MinION flowcell. For accurate ONT variant calling, the generated reads sufficiently covered 98.9% of pathogenic positions listed in ClinVar, with 98.96% having at least 30× DoC. ECNano obtained an average read length of 1000 bp. The long reads of ECNano also covered the adjacent splice sites well, with 98.5% of positions having ≥ 30× DoC. Clair-ensemble achieved > 99% recall and accuracy for SNV calling. The whole workflow from wet-lab protocol to variant detection was completed within three days. Conclusion: We presented ECNano, an out-of-the-box workflow comprising (1) a wet-lab protocol for ONT target enrichment sequencing and (2) a downstream variant detection workflow, Clair-ensemble. The workflow is cost-effective, with a short turnaround time for high accuracy variant calling in 4800 clinically significant genes and regions using a single MinION flowcell. The long-read exon captured data has potential for further development, promoting the application of long-read sequencing in personalized disease treatment and risk prediction. Keywords: Ensemble variant calling; Medical exome sequencing; MinION sequencing; Target enrichment; Third-generation sequencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。