Significance of Competitive Reactions in an Atmospheric Pressure Chemical Ionization Ion Source: Effect of Solvent

大气压化学电离离子源中竞争反应的重要性:溶剂的影响

阅读:2
作者:Younes Valadbeigi ,Tim Causon

Abstract

Ionization of organic compounds with different structural and energetic properties including benzene derivatives, polycyclic aromatic hydrocarbons (PAHs), ketones, and polyenes was studied using a commercial atmospheric pressure corona discharge (APCI) ion source on a drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOFMS). It was found that the studied cohort of compounds can be experimentally ionized via protonation, charge transfer, and hydride ion leading to formation of [M + H]+, [M]+•, and [M - H]+ species, respectively. By experimentally monitoring the product ions and comparing the thermodynamic data for different ionization paths, it was proposed that NO+ is one of the main reactant ions (RIs) in the ion source used. Of particular focus in this work were theoretical and experimental studies of the effect of solvents frequently used for analytical applications with this ion source (acetonitrile, methanol, and chloroform) on the ionization mechanisms. In methanol, the studied compounds were observed to be ionized mainly via proton transfer while acetonitrile suppressed the protonation of compounds and enhanced their ionization via charge transfer and hydride ion. Use of chloroform as a solvent led to formation of CHCl2+ as an alternative reactant ion (RI) to ionize the analytes via electrophilic substitution. Density functional theory (DFT) was used to study the different paths of ionization. The theoretical and experimental results showed that by using only the absolute thermodynamic data, the real ionization path cannot be determined and the energies of all competing processes such as charge transfer, protonation, and hydride ion need to be compared.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。