Identification of the synthetic cannabinoid-type new psychoactive substance, CH-PIACA, in seized material

在缴获物中鉴定出合成大麻素类新型精神活性物质 CH-PIACA

阅读:2
作者:Daniel Pasin ,Michael Nedahl ,Christian Brinch Mollerup ,Christian Tortzen ,Lotte Ask Reitzel ,Petur Weihe Dalsgaard

Abstract

Synthetic cannabinoids (SCs) remain the largest class of new psychoactive substances (NPS), and while the number of NPS that are reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) for the first time each year declines, the number of newly reported SCs still exceeds other NPS classes. This decline can be seen as a result of legislative changes by different jurisdictions which have sometimes transitioned to a more generalized approach when controlling substances by defining common structural scaffolds rather than explicit structures. While the consequences of such legislative changes have been expected over the years, the introduction of so-called "class-wide" bans puts further pressure on clandestine laboratories to synthesize compounds which are out of the scope of the legislation, and thus, these compounds are initially harder to detect and/or identify in the absence of analytical data. Recently, a SC with an indole-3-acetamide core-linker scaffold, AD-18 (i.e., ADB-FUBIATA or ADB-FUBIACA), was reported for the first time in China in 2021. Here, an additional cannabinoid with the indole-3-acetamide scaffold, N-cyclohexyl-2-(1-pentyl-1H-indol-3-yl)acetamide (CH-PIACA), is reported which was identified for the first time in a seized material in Denmark. Structural characterization was performed using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) spectroscopy. Keywords: NPS; drug seizure; synthetic cannabinoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。