Clostridium butyricum Potentially Improves Immunity and Nutrition through Alteration of the Microbiota and Metabolism of Elderly People with Malnutrition in Long-Term Care

丁酸梭菌可能通过改变长期护理机构中营养不良老年人的肠道菌群和代谢来改善其免疫力和营养状况

阅读:2
作者:Lin Liu ,Xiang Chen ,Lu Liu ,Huanlong Qin

Abstract

Recent research advances examining the gut microbiome and its association with human health have indicated that microbiota-targeted intervention is a promising means for health modulation. In this study, elderly people in long-term care (aged 83.2 ± 5.3 year) with malnutrition (MNA-SF score ≤ 7) were recruited in a community hospital for a 12-week randomized, single-blind clinical trial with Clostridium butyricum. Compared with the basal fluctuations of the control group, an altered gut microbiome was observed in the intervention group, with increased (p < 0.05) Coprobacillus species, Carnobacterium divergens, and Corynebacterium_massiliense, and the promoted growth of the beneficial organisms Akketmanse muciniphila and Alistipes putredinis. A concentrated profile of 14 increased Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KOs) that were enriched in cofactor/vitamin production and carbohydrate metabolism pathways were discovered; the genes were found to be correlated (p < 0.05) with an elevated abundance of plasma metabolites and short-chain fatty acids (SCFAs), unsaturated medium- to long-chain fatty acids (MFA, LFA), carnitines, and amino acids, thus suggesting a coordinated ameliorated metabolism. Proinflammatory factor interferon-gamma (IFN-γ) levels decreased (p < 0.05) throughout the intervention, while the gut barrier tight junction protein, occludin, rose in abundance (p = 0.059), and the sensitive nutrition biomarker prealbumin improved, in contrast to the opposite changes in control. Based on our results obtained during a relatively short intervention time, C. butyricum might have great potential for improving nutrition and immunity in elderly people in long-term care with malnutrition through the alteration of gut microbiota, increasing the abundance of beneficial bacteria and activating the metabolism in SCFA and cofactor/vitamin production, bile acid metabolism, along with efficient energy generation. Keywords: elderly people; metabolism; metagenome; probiotic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。