Exploring the molecular mechanisms underlie the endoplasmic reticulum stress-mediated methylmercury-induced neuronal developmental damage

探索内质网应激介导甲基汞诱导的神经元发育损伤的分子机制

阅读:5
作者:Jingjing Pan, Xiaoyang Li, Haihui Liu, Chen Wang, Si Xu, Bin Xu, Yu Deng, Tianyao Yang, Wei Liu

Abstract

Methylmercury (MeHg) is a ubiquitous environmental pollutant, which can cross the placenta and blood brain barrier, thus affecting fetal growth and development. Although previous studies have demonstrated that MeHg induces endoplasmic reticulum (ER) stress in rat cerebral cortex and primary neurons, the role of ER stress in MeHg-induced neurodevelopmental toxicity remains unclear. Here, we used ICR pregnant mice and hippocampal neurons cells (HT22 cells) to investigate the molecular mechanism by which MeHg exposure during pregnancy affects neurodevelopment. We found that prenatal MeHg exposure caused developmental delay in offspring, accompanied with ER stress, cell apoptosis, cell cycle arrest and abnormal DNA methylation. Then, we used ER stress specific inhibitor 4-PBA and CHOP siRNA to investigate the role of ER stress on HT22 cells damage caused by MeHg. The results showed that 4-PBA pretreatment restored MeHg-induced axonal shortening and alleviated apoptosis, cell cycle arrest and DNA methylation. At the same time, the activation of CHOP/c-Jun/GADD45A signaling pathway was inhibited, and the interaction between CHOP and c-Jun was weakened. In addition, CHOP siRNA reduced the expression of c-Jun and GADD45A, and relieved DNA methylation levels to some extent. In summary, our study suggested that ER stress induced by MeHg mediated cell apoptosis and cell cycle arrest, and may affect DNA methylation through activation of CHOP/c-Jun/GADD45A signaling pathway, thus leading to neuronal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。