Fibrillation of human insulin B-chain by pulsed hydrogen-deuterium exchange mass spectrometry

脉冲氢氘交换质谱法测定人胰岛素B链的纤维化

阅读:2
作者:Harshil K Renawala ,Elizabeth M Topp

Abstract

Insulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking). Initially, INSB rapidly formed β-sheet-rich oligomers that were protected from HD exchange and showed weak ThioT binding. Subsequent fibril growth and maturation was accompanied by even greater protection from HD exchange and stronger ThioT binding. With peptic digestion of deuterated INSB, HDX-MS suggested early involvement of the N-terminal (1-11, 1-15) and central (12-15, 16-25) fragments in fibril-forming interactions, whereas the C-terminal fragment (25-30) showed limited involvement. The results provide mechanistic understanding of the intermolecular interactions and structural changes during INSB fibrillation under stressed conditions and demonstrate the application of pulsed HDX-MS to probe peptide fibrillation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。