GPBAR1 preserves neurite and synapse of dopaminergic neurons via RAD21-OPCML signaling: Role in preventing Parkinson's disease in mouse model and human patients

GPBAR1 通过 RAD21-OPCML 信号传导保护多巴胺能神经元的神经突和突触:在小鼠模型和人类患者中预防帕金森病的作用

阅读:6
作者:Yajie Zhang, Xin Sun, Youjiao Zhang, Zhengwei Kang, Lei Cai, Jianhua Ding, Ming Lu, Gang Hu

Abstract

Parkinson's disease (PD) exhibits systemic impacts on the metabolism, while metabolic alteration contributes to the risk and progression of PD. Bile acids (BA) metabolism disturbance has been linked to PD pathology. Membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1) is expressed in the brain and thought to be neuroprotective; however, the role of GPBAR1 in PD remains unknown. The current study aimed to explore the effect of GPBAR1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with dopaminergic (DA) neuron-specific Gpbar1 knockdown or central GPBAR1 activation. The underlying mechanisms were investigated using mesencephalic primary neurons analyzed. Our study found that GPBAR1 was reduced in the substantia nigra of PD patients and MPTP-PD mice, and its expression was negatively correlated with the severity of PD-related features. Genetic downregulation of Gpbar1 in mouse mesencephalic DA neurons exacerbated MPTP-induced neurobehavioral and neuropathological deficits, whereas activation of central GPBAR1 with INT-777 (INT) relieved it. Moreover, in vivo and in vitro experiments showed the neurite- and synapse-protective effects of GPBAR1 activation in PD model. Mechanistically, by promoting the nuclear localization of cohesin subunit RAD21, GPBAR1 activation increased opioid-binding cell adhesion molecule (Opcml) expression, thereby inhibiting neurite and synapse degeneration of DA neurons in PD model. Collectively, our findings demonstrate that GPBAR1 is implicated in PD pathogenesis and activation of central GPBAR1 with INT antagonizes neurodegenerative pathology in PD model. This neuroprotection, at least in part, is attributed to the RAD21-OPCML signaling in neurons. Hence, GPBAR1 may serve as a promising candidate target for PD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。