Nitric oxide inhibits highly selective sodium channels and the Na+/K+-ATPase in H441 cells

一氧化氮抑制 H441 细胞中的高选择性钠通道和 Na+/K+-ATPase

阅读:8
作者:Mike Althaus, Alexandra Pichl, Wolfgang G Clauss, Werner Seeger, Martin Fronius, Rory E Morty

Abstract

Nitric oxide (NO) is an important regulator of Na(+) reabsorption by pulmonary epithelial cells and therefore of alveolar fluid clearance. The mechanisms by which NO affects epithelial ion transport are poorly understood and vary from model to model. In this study, the effects of NO on sodium reabsorption by H441 cell monolayers were studied in an Ussing chamber. Two NO donors, (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, rapidly, reversibly, and dose-dependently reduced amiloride-sensitive, short-circuit currents across H441 cell monolayers. This effect was neutralized by the NO scavenger hemoglobin and was not observed with inactive NO donors. The effects of NO were not blocked by 8-bromoguanosine-3',5'-cyclic monophosphate or by soluble guanylate cyclase inhibitors (methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) and were therefore independent of soluble guanylate cyclase signaling. NO targeted apical, highly selective, amiloride-sensitive Na(+) channels in basolaterally permeabilized H441 cell monolayers. NO had no effect on the activity of the human epithelial sodium channel heterologously expressed in Xenopus oocytes. NO decreased Na(+)/K(+)-ATPase activity in apically permeabilized H441 cell monolayers. The inhibition of Na(+)/K(+)-ATPase activity by NO was reversed by mercury and was mimicked by N-ethylmaleimide, which are agents that reverse and mimic, respectively, the reaction of NO with thiol groups. Consistent with these data, S-NO groups were detected on the Na(+)/K(+)-ATPase α subunit in response to NO-donor application, using a biotin-switch approach coupled to a Western blot. These data demonstrate that, in the H441 cell model, NO impairs Na(+) reabsorption by interfering with the activity of highly selective Na(+) channels and the Na(+)/K(+)-ATPase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。