Improved pulmonary function by acid sphingomyelinase inhibition in a newborn piglet lavage model

酸性鞘磷脂酶抑制在新生仔猪灌洗模型中改善肺功能

阅读:5
作者:Philipp von Bismarck, Carlos-Francisco García Wistädt, Karsten Klemm, Supandi Winoto-Morbach, Ulrike Uhlig, Stefan Schütze, Dieter Adam, Burkhard Lachmann, Stefan Uhlig, Martin F Krause

Conclusions

We conclude that stabilization of exogenous surfactant by adding imipramine to create a "fortified surfactant preparation" improves lung function in a clinically relevant piglet model, and that this effect can be attributed to the inhibition of a-SMase as evidenced in the mouse model.

Methods

After surfactant washout and induction of pulmonary inflammation, lung function was monitored over 24 hours of mechanical ventilation and followed by ex vivo analyses. In addition, we studied the effect of lipopolysaccharide inhalation in a-SMase-deficient mice at 48 hours. Measurements and main

Results

Surfactant washout increased both pulmonary a-SMase activity and ceramide content; this was attenuated by surfactant and prevented in the surfactant plus imipramine group. Compared with surfactant alone, Pa(O(2)), dynamic compliance, and extravascular lung water were improved in the final 12 hours in the surfactant plus imipramine group. At 24 hours, lavage fluid leukocyte counts and IL-8 concentrations decreased, and physical surfactant film properties improved. In the mouse model at 48 hours, a-SMase-deficient mice showed reduced pulmonary ceramide levels and attenuated leukocyte influx into the alveolar space. Conclusions: We conclude that stabilization of exogenous surfactant by adding imipramine to create a "fortified surfactant preparation" improves lung function in a clinically relevant piglet model, and that this effect can be attributed to the inhibition of a-SMase as evidenced in the mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。