Identification of Hub Genes and Potential Molecular Pathogenesis in Substantia Nigra in Parkinson's Disease via Bioinformatics Analysis

通过生物信息学分析鉴定帕金森病黑质中的关键基因及其潜在的分子发病机制

阅读:2
作者:Yunan Zhou ,Zhihui Li ,Chunling Chi ,Chunmei Li ,Meimei Yang ,Bin Liu

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease, with significant socioeconomic burdens. One of the crucial pathological features of PD is the loss of dopaminergic neurons in the substantia nigra (SN). However, the exact pathogenesis remains unknown. Moreover, therapies to prevent neurodegenerative progress are still being explored. We performed bioinformatics analysis to identify candidate genes and molecular pathogenesis in the SN of patients with PD. We analyzed the expression profiles, GSE49036 and GSE7621, which included 31 SN tissues in PD samples and 17 SN tissues in healthy control samples, and identified 86 common differentially expressed genes (DEGs). Then, GO and KEGG pathway analyses of the identified DEGs were performed to understand the biological processes and significant pathways of PD. Subsequently, a protein-protein interaction network was established, with 15 hub genes and four key modules which were screened in this network. The expression profiles, GSE8397 and GSE42966, were used to verify these hub genes. We demonstrated a decrease in the expression levels of 14 hub genes in the SN tissues of PD samples. Our results indicated that, among the 14 hub genes, DRD2, SLC18A2, and SLC6A3 may participate in the pathogenesis of PD by influencing the function of the dopaminergic synapse. CACNA1E, KCNJ6, and KCNB1 may affect the function of the dopaminergic synapse by regulating ion transmembrane transport. Moreover, we identified eight microRNAs (miRNAs) that can regulate the hub genes and 339 transcription factors (TFs) targeting these hub genes and miRNAs. Subsequently, we established an mTF-miRNA-gene-gTF regulatory network. Together, the identification of DEGs, hub genes, miRNAs, and TFs could provide better insights into the pathogenesis of PD and contribute to the diagnosis and therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。