Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress

铁通过调节氧化应激诱导心肌细胞胰岛素抵抗

阅读:9
作者:Hye Kyoung Sung, Erfei Song, James Won Suk Jahng, Kostas Pantopoulos, Gary Sweeney

Abstract

Iron overload is associated with various pathological changes which contribute to heart failure. Here, we examined mechanisms via which iron alters cardiomyocyte insulin sensitivity. Treatment of primary adult and neonatal cardiomyocytes as well as H9c2 cells with iron decreased insulin sensitivity determined via Western blotting or immunofluorescent detection of Akt and p70S6K phosphorylation and glucose uptake. Using CellROX deep red or DCF-DA probes we also observed that iron increased generation of reactive oxygen species (ROS), and that pretreatment with the superoxide dismutase mimetic MnTBAP reduced ROS production and attenuated iron-induced insulin resistance. SKQ1 and allopurinol but not apocynin reduced iron-induced ROS suggesting mitochondria and xanthine oxidase contribute to cellular ROS in response to iron. Western blotting for LC3-I, LC3-II and P62 levels as well as immunofluorescent co-detection of autophagosomes with Cyto-ID and lysosomal cathepsin activity indicated that iron attenuated autophagic flux without altering total expression of Atg7 or beclin-1 and phosphorylation of mTORC1 and ULK1. This conclusion was reinforced via protein accumulation detected using Click-iT HPG labelling after iron treatment. The adiponectin receptor agonist AdipoRon increased autophagic flux and improved insulin sensitivity both alone and in the presence of iron. We created an autophagy-deficient cell model by overexpressing a dominant-negative Atg5 mutant in H9c2 cells and this confirmed that reduced autophagy flux correlated with less insulin sensitivity. In conclusion, our study showed that iron promoted a cascade of ROS production, reduced autophagy and insulin resistance in cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。