Regulatory chromatin rewiring promotes metabolic switching during adaptation to oncogenic receptor tyrosine kinase inhibition

调节染色质重组促进适应致癌受体酪氨酸激酶抑制过程中的代谢转换

阅读:7
作者:Samuel Ogden, Kashmala Carys, Ibrahim Ahmed, Jason Bruce, Andrew D Sharrocks

Abstract

Oesophageal adenocarcinoma (OAC) patients show poor survival rates and there are few targeted molecular therapies available. However, components of the receptor tyrosine kinase (RTK) driven pathways are commonly mutated in OAC, typified by high frequency amplifications of the RTK ERBB2. ERBB2 can be therapeutically targeted, but this has limited clinical benefit due to the acquisition of drug resistance. Here we examined how OAC cells adapt to ERBB2 inhibition as they transition to a drug resistant state. ERBB2 inhibition triggers widespread remodelling of the accessible chromatin landscape and the underlying gene regulatory networks. The transcriptional regulators HNF4A and PPARGC1A play a key role in this network rewiring. Initially, inhibition of cell cycle associated gene expression programmes is observed, with compensatory increases in the programmes driving changes in metabolic activity. Both PPARGC1A and HNF4A are required for the acquisition of resistance to ERBB2 inhibition and PPARGC1A is instrumental in promoting a switch to dependency on oxidative phosphorylation. Our work therefore reveals the molecular pathways that support the acquisition of a resistant state and points to potential new therapeutic strategies to combat cellular adaptation and ensuing drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。