High-resolution analyses of associations between medications, microbiome, and mortality in cancer patients

对癌症患者药物、微生物组和死亡率之间关联的高分辨率分析

阅读:2
作者:Chi L Nguyen ,Kate A Markey ,Oriana Miltiadous ,Anqi Dai ,Nicholas Waters ,Keimya Sadeghi ,Teng Fei ,Roni Shouval ,Bradford P Taylor ,Chen Liao ,John B Slingerland ,Ann E Slingerland ,Annelie G Clurman ,Molly A Maloy ,Lauren Bohannon ,Paul A Giardina ,Daniel G Brereton ,Gabriel K Armijo ,Emily Fontana ,Ana Gradissimo ,Boglarka Gyurkocza ,Anthony D Sung ,Nelson J Chao ,Sean M Devlin ,Ying Taur ,Sergio A Giralt ,Miguel-Angel Perales ,Joao B Xavier ,Eric G Pamer ,Jonathan U Peled ,Antonio L C Gomes ,Marcel R M van den Brink

Abstract

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes. Keywords: 16S sequencing; computational modeling; hematopoietic cell transplantation; metagenomics; microbiota; pharmacological exposures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。