Antimicrobial potential and rhodamine B dye degradation using graphitic carbon nitride and polyvinylpyrrolidone doped bismuth tungstate supported with in silico molecular docking studies

使用石墨氮化碳和聚乙烯吡咯烷酮掺杂的钨酸铋进行抗菌潜力和罗丹明 B 染料降解,并支持计算机分子对接研究

阅读:4
作者:Muhammad Hasnain Ashfaq, Muhammad Imran, Ali Haider, Anum Shahzadi, Muhammad Mustajab, Anwar Ul-Hamid, Walid Nabgan, Francisco Medina, Muhammad Ikram

Abstract

The environmental-friendly hydrothermal method has been carried out to synthesize Bi2WO6 and g-C3N4/PVP doped Bi2WO6 nanorods (NRs) by incorporating different concentrations of graphitic carbon nitride (g-C3N4) as well as a specified quantity of polyvinylpyrrolidone (PVP). Bi2WO6 doped with g-C3N4 provides structural and chemical stability, reduces charge carriers, degrades dyes, and, owing to lower bandgap energy, is effective for antibacterial, catalytic activity, and molecular docking analysis. The purpose of this research is the treatment of polluted water and to investigate the bactericidal behavior of a ternary system. The catalytic degradation was performed to remove the harmful rhodamine B (RhB) dye using NaBH4 in conjunction with prepared NRs. The specimen compound demonstrated antibacterial activity against Escherichia coli (E. coli) at both high and low concentrations. Higher doped specimens of g-C3N4/PVP-doped Bi2WO6 exhibited a significant improvement in efficient bactericidal potential against E. coli (4.55 mm inhibition zone). In silico experiments were carried out on enoyl-[acylcarrier-protein] reductase (FabI) and β-lactamase enzyme for E. coli to assess the potential of Bi2WO6, PVP doped Bi2WO6, and g-C3N4/PVP-doped Bi2WO6 NRs as their inhibitors and to justify their possible mechanism of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。