Genetic demonstration of intestinal NPC1L1 as a major determinant of hepatic cholesterol and blood atherogenic lipoprotein levels

肠道 NPC1L1 的基因证明是肝脏胆固醇和血液动脉粥样硬化脂蛋白水平的主要决定因素

阅读:10
作者:Ping Xie, Hongling Zhu, Lin Jia, Yinyan Ma, Weiqing Tang, Youlin Wang, Bingzhong Xue, Hang Shi, Liqing Yu

Conclusion

Our findings from DKO/L1(IntOnly) mice clearly demonstrate that NPC1L1-mediated cholesterol absorption is a major determinant of blood levels of apolipoprotein B-containing atherogenic lipoproteins, at least in mice.

Objective

The correlation between intestinal cholesterol absorption values and plasma low-density lipoprotein-cholesterol (LDL-C) levels remains controversial. Niemann-Pick-C1-Like 1 (NPC1L1) is essential for intestinal cholesterol absorption, and is the target of ezetimibe, a cholesterol absorption inhibitor. However, studies with NPC1L1 knockout mice or ezetimibe cannot definitively clarify this correlation because NPC1L1 expression is not restricted to intestine in humans and mice. In this study we sought to genetically address this issue.

Results

We developed a mouse model that lacks endogenous (NPC1L1) and LDL receptor (LDLR) (DKO), but transgenically expresses human NPC1L1 in gastrointestinal tract only (DKO/L1(IntOnly) mice). Our novel model eliminated potential effects of non-intestinal NPC1L1 on cholesterol homeostasis. We found that human NPC1L1 was localized at the intestinal brush border membrane of DKO/L1(IntOnly) mice. Cholesterol feeding induced formation of NPC1L1-positive vesicles beneath this membrane in an ezetimibe-sensitive manner. Compared to DKO mice, DKO/L1(IntOnly) mice showed significant increases in cholesterol absorption and blood/hepatic/biliary cholesterol. Increased blood cholesterol was restricted to very low-density lipoprotein (VLDL) and LDL fractions, which was associated with increased secretion and plasma levels of apolipoproteins B100 and B48. Additionally, DKO/L1(IntOnly) mice displayed decreased fecal cholesterol excretion and hepatic/intestinal expression of cholesterologenic genes. Ezetimibe treatment virtually reversed all of the transgene-related phenotypes in DKO/L1(IntOnly) mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。