Plasma metabolomics supports non-fasted sampling for metabolic profiling across a spectrum of glucose tolerance in the Nile rat model for type 2 diabetes

血浆代谢组学支持非空腹采样,以对 2 型糖尿病尼罗河大鼠模型的一系列葡萄糖耐受性进行代谢分析

阅读:2
作者:Benton J Anderson, Anne M Curtis, Annie Jen, James A Thomson, Dennis O Clegg, Peng Jiang, Joshua J Coon, Katherine A Overmyer, Huishi Toh

Abstract

Type 2 diabetes is a challenge in modern healthcare, and animal models are necessary to identify underlying mechanisms. The Nile rat (Arvicanthis niloticus) develops diet-induced diabetes rapidly on a conventional rodent chow diet without genetic or chemical manipulation. Unlike common laboratory models, the outbred Nile rat model is diurnal and has a wide range of overt diabetes onset and diabetes progression patterns in both sexes, better mimicking the heterogeneous diabetic phenotype in humans. While fasted blood glucose has historically been used to monitor diabetic progression, postprandial blood glucose is more sensitive to the initial stages of diabetes. However, there is a long-held assumption that ad libitum feeding in rodent models leads to increased variance, thus masking diabetes-related metabolic changes in the plasma. Here we compared repeatability within triplicates of non-fasted or fasted plasma samples and assessed metabolic changes relevant to glucose tolerance in fasted and non-fasted plasma of 8-10-week-old male Nile rats. We used liquid chromatography-mass spectrometry lipidomics and polar metabolomics to measure relative metabolite abundances in the plasma samples. We found that, compared to fasted metabolites, non-fasted plasma metabolites are not only more strongly associated with glucose tolerance on the basis of unsupervised clustering and elastic net regression model, but also have a lower replicate variance. Between the two sampling groups, we detected 66 non-fasted metabolites and 32 fasted metabolites that were associated with glucose tolerance using a combined approach with multivariable elastic net and individual metabolite linear models. Further, to test if metabolite replicate variance is affected by age and sex, we measured non-fasted replicate variance in a cohort of mature 30-week-old male and female Nile rats. Our results support using non-fasted plasma metabolomics to study glucose tolerance in Nile rats across the progression of diabetes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。