Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation

α-tectorin C1509G 人类听力损失突变导致正向转导不足和反向转导增强

阅读:5
作者:Anping Xia, Simon S Gao, Tao Yuan, Alexander Osborn, Andreas Bress, Markus Pfister, Stephen M Maricich, Fred A Pereira, John S Oghalai

Abstract

Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss. We engineered and validated this mutation in mice and found that the TM was shortened in heterozygous Tecta(C1509G/+) mice, reaching only the first row of OHCs. Thus, deficient forward transduction renders OHCs within the second and third rows non-functional, producing partial hearing loss. Surprisingly, both Tecta(C1509G/+) and Tecta(C1509G/C1509G) mice were found to have increased reverse transduction as assessed by sound- and electrically-evoked otoacoustic emissions. We show that an increase in prestin, a protein necessary for electromotility, in all three rows of OHCs underlies this phenomenon. This mouse model demonstrates a human hearing loss mutation in which OHC function is altered through a non-cell-autonomous variation in prestin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。