Unified Mouse and Human Kidney Single-Cell Expression Atlas Reveal Commonalities and Differences in Disease States

统一的小鼠和人类肾脏单细胞表达图谱揭示了疾病状态下的共性和差异

阅读:2
作者:Jianfu Zhou ,Amin Abedini ,Michael S Balzer ,Rojesh Shrestha ,Poonam Dhillon ,Hongbo Liu ,Hailong Hu ,Katalin Susztak

Abstract

Significance statement: Mouse models have been widely used to understand kidney disease pathomechanisms and play an important role in drug discovery. However, these models have not been systematically analyzed and compared. The authors characterized 18 different mouse kidney disease models at both bulk and single-cell gene expression levels and compared single-cell gene expression data from diabetic kidney disease (DKD) mice and from patients with DKD. Although single cell-level gene expression changes were mostly model-specific, different disease models showed similar changes when compared at a pathway level. The authors also found that changes in fractions of cell types are major drivers of bulk gene expression differences. Although the authors found only a small overlap of single cell-level gene expression changes between the mouse DKD model and patients, they observed consistent pathway-level changes. Background: Mouse models have been widely used to understand kidney disease pathomechanisms and play an important role in drug discovery. However, these models have not been systematically analyzed and compared. Methods: We analyzed single-cell RNA sequencing data (36 samples) and bulk gene expression data (42 samples) from 18 commonly used mouse kidney disease models. We compared single-nucleus RNA sequencing data from a mouse diabetic kidney disease model with data from patients with diabetic kidney disease and healthy controls. Results: We generated a uniformly processed mouse single-cell atlas containing information for nearly 300,000 cells, identifying all major kidney cell types and states. Our analysis revealed that changes in fractions of cell types are major drivers of differences in bulk gene expression. Although gene expression changes at the single-cell level were mostly model-specific, different disease models showed similar changes when compared at a pathway level. Tensor decomposition analysis highlighted the important changes in proximal tubule cells in disease states. Specifically, we identified important alterations in expression of metabolic and inflammation-associated pathways. The mouse diabetic kidney disease model and patients with diabetic kidney disease shared only a small number of conserved cell type-specific differentially expressed genes, but we observed pathway-level activation patterns conserved between mouse and human diabetic kidney disease samples. Conclusions: This study provides a comprehensive mouse kidney single-cell atlas and defines gene expression commonalities and differences in disease states in mice. The results highlight the key role of cell heterogeneity in driving changes in bulk gene expression and the limited overlap of single-cell gene expression changes between animal models and patients, but they also reveal consistent pathway-level changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。