Conditional overexpression of TGF-beta1 disrupts mouse salivary gland development and function

TGF-β1 的条件性过表达会破坏小鼠唾液腺的发育和功能

阅读:9
作者:Bradford E Hall, Changyu Zheng, William D Swaim, Andrew Cho, Chandrasekharam N Nagineni, Michael A Eckhaus, Kathleen C Flanders, Indu S Ambudkar, Bruce J Baum, Ashok B Kulkarni

Abstract

Transforming growth factor-beta (TGF-beta) signaling is known to affect salivary gland physiology by influencing branching morphogenesis, regulating ECM deposition, and controlling immune homeostasis. To study the role of TGF-beta1 in the salivary gland, we created a transgenic mouse (beta1(glo)) that conditionally overexpresses active TGF-beta1 upon genomic recombination by Cre recombinase. beta1(glo) mice were bred with an MMTV (mouse mammary tumor virus)-Cre (MC) transgenic line that expresses the Cre recombinase predominantly in the secretory cells of both the mammary and salivary glands. Although most of the double positive (beta1(glo)/MC) pups die either in utero or just after birth, clear defects in salivary gland morphogenesis such as reduced branching and increased mesenchyme could be seen. Those beta1(glo)/MC mice that survived into adulthood, however, had hyposalivation due to salivary gland fibrosis and acinar atrophy. Increased TGF-beta signaling was observed in the salivary gland with elevated phosphorylation of Smad2 and concomitant increase in ECM deposition. In particular, aberrant TGF-beta1 overexpression caused salivary gland hypofunction in this mouse model because of the replacement of normal glandular parenchyma with interstitial fibrous tissue. These results further implicate TGF-beta in pathological cases of salivary gland inflammation and fibrosis that occur with chronic infections in the glands or with the autoimmune disease, Sjögren's syndrome, or with radiation therapy given to head-and-neck cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。