Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats

植物性面粉对高脂饮食大鼠代谢稳态和肠道菌群的不同影响

阅读:7
作者:Taylor M Martinez #, Hallie R Wachsmuth #, Rachel K Meyer, Savanna N Weninger, Adelina I Lane, Archana Kangath, Gabriele Schiro, Daniel Laubitz, Jennifer H Stern, Frank A Duca

Background

The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized.

Conclusions

Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.

Methods

In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation.

Results

In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. Conclusions: Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。