An accurate aging clock developed from large-scale gut microbiome and human gene expression data

基于大规模肠道微生物组和人类基因表达数据开发的精确衰老时钟

阅读:2
作者:Vishakh Gopu ,Francine R Camacho ,Ryan Toma ,Pedro J Torres ,Ying Cai ,Subha Krishnan ,Sathyapriya Rajagopal ,Hal Tily ,Momchilo Vuyisich ,Guruduth Banavar

Abstract

Accurate measurement of the biological markers of the aging process could provide an "aging clock" measuring predicted longevity and enable the quantification of the effects of specific lifestyle choices on healthy aging. Using machine learning techniques, we demonstrate that chronological age can be predicted accurately from (1) the expression level of human genes in capillary blood and (2) the expression level of microbial genes in stool samples. The latter uses a very large metatranscriptomic dataset, stool samples from 90,303 individuals, which arguably results in a higher quality microbiome-aging model than prior work. Our analysis suggests associations between biological age and lifestyle/health factors, e.g., people on a paleo diet or with IBS tend to have higher model-predicted ages and people on a vegetarian diet tend to have lower model-predicted ages. We delineate the key pathways of systems-level biological decline based on the age-specific features of our model. Keywords: Microbiome; Omics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。