Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach

利用手性核壳串联柱方法,通过超高效液相色谱-漂移管离子迁移质谱法实现三分钟对映选择性氨基酸分析

阅读:2
作者:Simon Jonas Jaag ,Younes Valadbeigi ,Tim Causon ,Harald Gross ,Michael Lämmerhofer

Abstract

Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。