Ammonia Retention in Biowaste via Low-Temperature-Plasma-Synthesized Nitrogen Oxyacids: Toward Sustainable Upcycling of Animal Waste

利用低温等离子体合成的含氮酸对生物质废弃物中的氨进行保留:迈向动物废弃物的可持续升级再造

阅读:2
作者:Victor V Miller ,Douglas S Clark ,Ali Mesbah

Abstract

Sustainable fertilizer production is a pressing challenge due to a growing human population. The manufacture of synthetic nitrogen fertilizer involves intensive emissions of greenhouse gases. The synthetic nitrogen that ends up in biowaste such as animal waste perturbs the nitrogen cycle through significant nitrogen losses in the form of ammonia volatilization, a major human health and environmental hazard. Low-temperature air-plasma treatment of animal waste holds promise for sustainable fertilizer production on farmlands by enabling nitrogen fixation via ionization, forming nitrogen oxyacids. Although the formation of nitrogen oxyacids in plasma treatment of water is well-established, the extent of nitrogen oxyanion enrichment in animal waste and its downstream effects on acidifying the waste remain elusive because many compounds found in complex biowaste media may interfere with absorbed NOx species. This work aims to establish that plasma treatment of dairy manure can suppress ammonia loss by volatilization via acidification of animal waste while enriching the waste in total nitrogen due to nitrogen retained in ammonia as well as adding nitrogen oxyacids by reacting NOx with the aqueous slurry. To this end, air-plasma effluent containing NOx is bubbled through dairy manure, which is then analyzed for changes in the nitrogen oxyanion content and pH. Increasing the plasma treatment time results in more acidic manure, reduced ammonium content in the downstream acid trap, and increased nitrogen oxyanion content, where the yield of nitrogen oxyanion from absorbed NOx species is approximately 100%. Increased plasma treatment also led to an increase in the total Kjeldahl nitrogen and the total nitrogen. These results indicate that plasma treatment of animal waste can significantly suppress ammonia pollution from animal husbandry facilities such as dairy farms while upcycling animal waste as a rich organic source of nitrogen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。