Systemically functional characterization of regiospecific flavonoid O-methyltransferases from Glycine max

对大豆属植物中区域特异性黄酮类化合物O-甲基转移酶进行系统功能表征

阅读:2
作者:Bingtong Feng ,Yuguo Jiang ,Xiaodong Li ,Yan Wang ,Ziyu Ren ,Jian Lu ,Xing Yan ,Zhihua Zhou ,Pingping Wang

Abstract

Plants produce diverse flavonoids for defense and stress resistance, most of which have health benefits and are widely used as food additives and medicines. Methylation of the free hydroxyl groups of flavonoids, catalyzed by S-adenosyl-l-methionine-dependent O-methyltransferases (OMTs), significantly affects their physicochemical properties and bioactivities. Soybeans (Glycine max) contain a rich pool of O-methylated flavonoids. However, the OMTs responsible for flavonoid methylation in G. max remain largely unknown. We screened the G. max genome and obtained 22 putative OMT-encoding genes that share a broad spectrum of amino acid identities (25-96%); among them, 19 OMTs were successfully cloned and heterologously expressed in Escherichia coli. We used the flavonoids containing the free 3, 5, 7, 8, 3', 4' hydroxyl group, such as flavones (luteolin and 7, 8-dihydroxyflavone), flavonols (kaempferol and quercetin), flavanones (naringenin and eriodictyol), isoflavonoids (daidzein and glycetein), and caffeic acid as substrates, and 15 OMTs were proven to catalyze at least one substrate. The methylation activities of these GmOMTs covered the 3, 7, 8, 3', 4'- hydroxyl of flavonoids and 7, 4'- hydroxyl of isoflavonoids. The systematic characterization of G. max flavonoid OMTs provides insights into the biosynthesis of methylated flavonoids in soybeans and OMT bioparts for the production of methylated flavonoids via synthetic biology. Keywords: Flavonoids; Functional characterization; Glycine max; O-methyltransferases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。