Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning

星形胶质细胞通过调节学习过程中的海马皮质通讯促进远程记忆的形成

阅读:9
作者:Adi Kol, Adar Adamsky, Maya Groysman, Tirzah Kreisel, Michael London, Inbal Goshen

Abstract

Remote memories depend on coordinated activity in the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes sense and modify neuronal activity, but their role in remote memory is scarcely explored. We expressed the Gi-coupled designer receptor hM4Di in CA1 astrocytes and discovered that astrocytic manipulation during learning specifically impaired remote, but not recent, memory recall and decreased activity in the anterior cingulate cortex (ACC) during retrieval. We revealed massive recruitment of ACC-projecting CA1 neurons during memory acquisition, which was accompanied by the activation of ACC neurons. Astrocytic Gi activation disrupted CA3 to CA1 communication in vivo and reduced the downstream response in the ACC. In behaving mice, it induced a projection-specific inhibition of CA1-to-ACC neurons during learning, which consequently prevented ACC recruitment. Finally, direct inhibition of CA1-to-ACC-projecting neurons spared recent and impaired remote memory. Our findings suggest that remote memory acquisition involves projection-specific functions of astrocytes in regulating CA1-to-ACC neuronal communication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。