PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies

PheSeq 是一种贝叶斯深度学习模型,用于增强和解释基因-疾病关联研究。

阅读:2
作者:Xinzhi Yao ,Sizhuo Ouyang ,Yulong Lian ,Qianqian Peng ,Xionghui Zhou ,Feier Huang ,Xuehai Hu ,Feng Shi ,Jingbo Xia

Abstract

Despite the abundance of genotype-phenotype association studies, the resulting association outcomes often lack robustness and interpretations. To address these challenges, we introduce PheSeq, a Bayesian deep learning model that enhances and interprets association studies through the integration and perception of phenotype descriptions. By implementing the PheSeq model in three case studies on Alzheimer's disease, breast cancer, and lung cancer, we identify 1024 priority genes for Alzheimer's disease and 818 and 566 genes for breast cancer and lung cancer, respectively. Benefiting from data fusion, these findings represent moderate positive rates, high recall rates, and interpretation in gene-disease association studies. Keywords: p-value; Associated genes; Data fusion; Embedding data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。