In Vitro Treatment with Metformin Significantly Reduces Senescent B Cells Present in the Adipose Tissue of People with Obesity

体外二甲双胍治疗可显著减少肥胖患者脂肪组织中衰老B细胞的数量

阅读:3
作者:Maria Romero ,Andrew Gelsomini ,Kate Miller ,Dhananjay Suresh ,Seth Thaller ,Daniela Frasca

Abstract

Background: Our previous work has shown that senescent B cells accumulate in the human adipose tissue (AT) of people with obesity, where they express transcripts for markers associated with the senescence-associated secretory phenotype (SASP) and secrete multiple inflammatory mediators. These functions of AT-derived B cells are metabolically supported. Objectives: To show that Metformin (MET), a widely used hypoglycemic and antidiabetic drug, is able at least in vitro to decrease frequencies, secretory profile, and metabolic requirements of senescent B cells isolated from the AT of people with obesity. Methods: We recruited adult females with obesity (n = 8, age 40 ± 2 y, BMI range: 33-42) undergoing breast reduction surgery, who donated their discarded subcutaneous AT. B cells from stromal vascular fractions isolated after collagenase digestion of the AT were evaluated after in vitro incubation with MET (1 mM × 106 B cells) or with a control medium without MET for the following measures: expression of transcripts for SASP-associated markers (p16INK4a and p21CIP1/WAF1) measured by quantitative polymerase chain reaction (qPCR); secretion of inflammatory cytokines (TNF-α, IL-6, IFN-γ and IL-17A) measured by a Cytometric Bead Array); metabolic characteristics as identified by a glycolytic test and Seahorse technology, and by the expression of transcripts for glucose transporters and metabolic enzymes involved in glucose metabolic pathways, measured by qPCR. To examine differences between MET-treated compared with untreated groups, paired Student's t tests (two-tailed) were employed. Results: MET in vitro was able to reduce frequencies and numbers of senescent B cells, as identified by staining with β-galactosidase, as well as the secretion of inflammatory cytokines, the expression of transcripts for SASP, and metabolic markers that support intrinsic B cell inflammation. Conclusions: Our results provide evidence to support the beneficial effects of MET in reducing AT-related inflammation through its effects on senescent B cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。