Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro

HIV/HCV 蛋白酶抑制剂的再利用,对抗 SARS-CoV-2 3CLpro

阅读:7
作者:Ling Ma, Quanjie Li, Yongli Xie, Jianyuan Zhao, Dongrong Yi, Saisai Guo, Fei Guo, Jing Wang, Long Yang, Shan Cen

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen that caused the global COVID-19 outbreak. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a key role in virus replication and has become an ideal target for antiviral drug design. In this work, we have employed bioluminescence resonance energy transfer (BRET) technology to establish a cell-based assay for screening inhibitors against SARS-CoV-2 3CLpro, and then applied the assay to screen a collection of known HIV/HCV protease inhibitors. Our results showed that the assay is capable of quantification of the cleavage efficiency of 3CLpro with good reproducibility (Z' factor is 0.59). Using the assay, we found that 9 of 26 protease inhibitors effectively inhibited the activity of SARS-CoV-2 3CLpro in a dose-dependent manner. Among them, four compounds exhibited the ability to bind to 3CLproin vitro. HCV protease inhibitor simeprevir showed the most potency against 3CLpro with an EC50 vale of 2.6 μM, bound to the active site pocket of 3CLpro in a predicted model, and importantly, exhibited a similar activity against the protease containing the mutations P132H in Omicron variants. Taken together, this work demonstrates the feasibility of using the cell-based BRET assay for screening 3CLpro inhibitors and supports the potential of simeprevir for the development of 3CLpro inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。