Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite

(AgCl, Ag)NPs/硅藻土杂化复合材料的合成及抗菌活性

阅读:9
作者:Zhanar Kubasheva, Myroslav Sprynskyy, Viorica Railean-Plugaru, Paweł Pomastowski, Aliya Ospanova, Bogusław Buszewski

Abstract

In the present research, hybrid (AgCl, Ag)NPs/diatomite composites were synthesized by direct impregnation with aqueous silver nitrate solutions. The silver chloride nanoparticles (AgCl-NPs) were formed as an effect of the exchange reaction when silver interacted with the diatomite mineral impurity halite. Nanoparticles of metallic silver (AgNPs) were created by the reduction of silver ions under the influence of hydrogen peroxide. The content of silver chloride nanoparticles in the (AgCl, Ag)NPs/diatomite composite was limited by the content of the halite in the used diatomite. Samples of natural diatomite and synthesized (AgCl, Ag)NPs/diatomite composites were examined by using scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, infrared spectroscopy and thermogravimetric analysis. Moreover, the antibacterial potential of synthesized composites was also studied using the MIC (minimal inhibitory concentration) method against the most common drug-resistant microorganisms in the medical field: Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. The obtained hybrid (AgCl, AgNPs)/diatomite composites were shown to have antimicrobial potential. However, widespread use requires further study by using various microorganisms and additional cytotoxic studies on eukaryotic systems, e.g., cell lines and animal models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。