Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm

家蚕死亡后过程中全基因组基因表达和转录后调控的时间依赖性变化

阅读:2
作者:Lin-Yu Yang ,Da-Rui Tang ,Shi-Qi Luo ,Wei-Wei Li ,Yu-Hang Jiang ,Lian-Bing Lin ,Qi-Lin Zhang

Abstract

Despite death marking the end of life, several gene expression and miRNA-mediated post-transcriptional regulation events may persist or be initiated. The silkworm (Bombyx mori) is a valuable model for exploring life processes, including death. In this study, we combined transcriptomics and miRNAomics analyses of young, old, and post-mortem silkworms across the entire process after death to unravel the dynamics of gene expression and miRNA-mediated post-transcriptional regulation. In total, 171 genes exhibited sustained differential expression in post-mortem silkworms compared to the pre-death state, which are primarily involved in nerve signalling, transport, and immune response. Post-mortem time-specific genes were associated with cell cycle regulation, thermogenesis, immunity, and zinc ion homeostasis. We found that the down-regulated expression of 36 genes related to transcription, epigenetic modification, and homeostasis resulted in a significant shift in global gene expression patterns at 2 h post-death. We also identified 5 mRNA-miRNA pairs (i.e. bmo-miR-2795-mhca, 2784-achi, 2762-oa1, 277-5p-creb, and 1000-tcb1) associated with stress hormone regulation, transcription activity, and signal transduction. The roles of these pairs were validated through in vivo experiments using miRNA mimics in silkworms. The findings provide valuable insights into the intricate mechanisms underlying the transcriptional and miRNA-mediated post-transcriptional regulation events in animals after death. Keywords: gene expression; miRNA; post-mortem; post-transcriptional regulation; silkworm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。