Impact of the Stress Response on Quaternary Ammonium Compound Disinfectant Susceptibility in Serratia Species

应激反应对沙雷氏菌属细菌季铵化合物消毒剂敏感性的影响

阅读:2
作者:Samantha McCarlie ,Robert R Bragg

Abstract

The well-known problem of antibiotic resistance foreshadows a similar threat posed by microbial resistance to biocides such as disinfectants and antiseptics. These products are vital for infection control, yet their overuse during the COVID-19 pandemic has accelerated the development of resistant microorganisms. This study investigates the molecular mechanisms underlying disinfectant resistance in Serratia sp. HRI. The transcriptomic responses of Serratia sp. HRI were used to identify significant gene expression changes during exposure to QACs and revealed increased methionine transport and polyamine synthesis. Polyamines, crucial in cellular stress responses, were notably upregulated, suggesting a pivotal role of the stress response in disinfectant resistance. Further, our susceptibility tests revealed a marked decrease in susceptibility to QACs under various stress conditions, supporting the hypothesis that stress responses, mediated by polyamines, decrease susceptibility to QACs. This research highlights polyamines as key players in disinfectant resistance, offering novel insights into resistance mechanisms and antimicrobial susceptibility. Our findings emphasise the need for continued investigation into disinfectant resistance and the role of stress responses, particularly polyamine-mediated mechanisms, to direct strategies for preserving disinfectant efficacy and developing future antimicrobial agents. Keywords: RNA-Seq; antimicrobial resistance; polyamines; quaternary ammonium compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。