Mitochondrial dysfunction of Astrocyte induces cell activation under high salt condition

星形胶质细胞线粒体功能障碍在高盐条件下诱导细胞活化

阅读:2
作者:Yuemin Qiu ,Gengxin Lu ,Shifeng Zhang ,Li Minping ,Xu Xue ,Wu Junyu ,Zhihui Zheng ,Weiwei Qi ,Junjie Guo ,Dongxiao Zhou ,Haiwei Huang ,Zhezhi Deng

Abstract

Excess dietary sodium can accumulate in brain and adversely affect human health. We have confirmed in previous studies that high salt can induce activation of astrocyte manifested by the secretion of various inflammatory factors. In order to further explore the effect of high salt on the internal cell metabolism of astrocytes, RNA sequencing was performed on astrocytes under high salt environment, which indicated the oxidative phosphorylation and glycolysis pathways of astrocytes were downregulated. Next, we found that high salt concentrations elicited astrocyte mitochondrial morphology change, as evidenced by swelling from a short rod to a round shape through a High Intelligent and Sensitive Structured Illumination Microscope (HIS-SIM). Furthermore, we found that high salt concentrations reduced astrocyte mitochondrial oxygen consumption and membrane potential. Treatment with 18-kDa translocator protein (TSPO) ligands FGIN-1-27 improved mitochondrial networks and reversed astrocyte activation under high-salt circumstances. Our study shows that high salt can directly disrupt astrocytic mitochondrial homeostasis and function. Targeting translocator protein signaling may have therapeutic potential against high-salt neurotoxicity. Keywords: Astrocyte; High salt; Mitochondrial dysfunction; TSPO ligand.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。