Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity

对血液和六个脑区转录组学研究的荟萃分析,揭示了阿尔茨海默病中15种跨组织机制的共识,并提出了研究间异质性的起源。

阅读:2
作者:Jiahui Hou ,Jonathan L Hess ,Chunling Zhang ,Jeroen G J van Rooij ,Gentry C Hearn ,Chun Chieh Fan ,Stephen V Faraone ,Christine Fennema-Notestine ,Shu-Ju Lin ,Valentina Escott-Price ,Sudha Seshadri ,Ming T Tsuang ,William S Kremen ,Chris Gaiteri ,Stephen J Glatt

Abstract

The comprehensive genome-wide nature of transcriptome studies in Alzheimer's disease (AD) should provide a reliable description of disease molecular states. However, the genes and molecular systems nominated by transcriptomic studies do not always overlap. Even when results do align, it is not clear if those observations represent true consensus across many studies. A couple of sources of variation have been proposed to explain this variability, including tissue-of-origin and cohort type, but its basis remains uncertain. To address this variability and extract reliable results, we utilized all publicly available blood or brain transcriptomic datasets of AD, comprised of 24 brain studies with 4007 samples from six different brain regions, and eight blood studies with 1566 samples. We identified a consensus of AD-associated genes across brain regions and AD-associated gene-sets across blood and brain, generalizable machine learning and linear scoring classifiers, and significant contributors to biological diversity in AD datasets. While AD-associated genes did not significantly overlap between blood and brain, our findings highlighted 15 dysregulated processes shared across blood and brain in AD. The top five most significantly dysregulated processes were DNA replication, metabolism of proteins, protein localization, cell cycle, and programmed cell death. Conversely, addressing the discord across studies, we found that large-scale gene co-regulation patterns can account for a significant fraction of variability in AD datasets. Overall, this study ranked and characterized a compilation of genes and molecular systems consistently identified across a large assembly of AD transcriptome studies in blood and brain, providing potential candidate biomarkers and therapeutic targets. Keywords: Alzheimer's disease; blood; brain; classification; gene expression; meta‐analysis; transcriptome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。