Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis

植物特异性铜伴侣家族的进化对叶绿体铜稳态的影响

阅读:8
作者:Crysten E Blaby-Haas, Teresita Padilla-Benavides, Roland Stübe, José M Argüello, Sabeeha S Merchant

Abstract

Metallochaperones traffic copper (Cu(+)) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. We present a previously unidentified Cu(+) chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu(+) chaperone delivers Cu(+) with specificity for PAA1, which is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu(+) import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu(+)-delivery mechanism and provides a unique snapshot into the evolution of a Cu(+) distribution pathway. We also provide evidence for an interaction between PAA2, the Cu(+)-ATPase in thylakoids, and the Cu(+)-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu(+) network that has evolved to fine-tune Cu(+) distribution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。